

SGS INSTITUT FRESENIUS GmbH• Postfach 1261 • 65220 Taunusstein

Latex Occidental Exportadora, S.A. de C.V. Mrs. Barbara Bernal Calz. Glez. Gallo 2290 44890 C.P.Guadalajara, Ial. Mexico **MEXICO**

Gabriele Göttsch/ab Project Manager Tel.: +49 6128744-151, Fax: +49 6128744-534 Gabriele.Goettsch@sgs.com Consumer and Retail Non Food

Taunusstein, 07/09/2016

Test-report no. 3071021 Test-report version < 1 >

Original Sample ID	Sample Description	Sample Receipt Date
160855925	sample (1) 100/9 PS & DC transparent, white, yellow, orange, red, pink, dark violet, dark blue, dark green, black	19/08/2016

General Information

SGS-Client's ID	:	10019242
SGS-Customer-Order	:	3855160
Ordering date	:	16/08/2016
Testing period	:	26/08/2016 - 31/08/2016; 01/09/2016 - 07/09/2016
Order No.	:	Folio 44
Testing scope	:	Test according to client's requirements

Assessment

Overall assessment

The samples meet the requirements of EN 71-3:2014.

SGS INSTITUT FRESENIUS GmbH

Cabo i. V.

Gabriele Göttsch Project Manager

Alena Knauz Project Manager

page 1 / 6

SGS INSTITUT FRESENIUS GmbH | Im Maisel 14 D-65232 Taunusstein t+49 6128 744 - 0 f+49 6128 744 - 130 www.institut-fresenius.sgsgroup.de

Member of the SGS Group (Société Générale de Surveillance)

Pass

Die Prüfergebnisse beziehen sich auf die untersuchten Proben. Die Veröffentlichung und Vervielfältigung unserer Prüfberichte und Gutachten zu Werbezwecken sowie deren auszugsweise Verwendung in sonstigen Fällen bedürfen unserer schriftlichen Genehmigung. Alle Dienstleistungen werden auf Grundlage der anwendbaren Allgemeinen Geschäftsbedingungen der SGS, die auf Anfrage zur Verfügung gestellt werden, erbracht.

Geschäftsführer: Stefan Steinhardt, Aufsichtsratvorsitzender: Dirk Hellemans, Sitz der Gesellschaft: Taunusstein, HRB 21543 Amtsgericht Wiesbaden

Test report no. 3071021

Latex Occidental Exportadora, S.A. de C.V.	SGS Order No.: 3855160
Calz. Glez. Gallo 2290	Date: 07/09/2016
MX-44890 C.P.Guadalajara, lal. Mexico	Page 2/6

Summary of results

Test	Result
Migration of certain elements DIN EN 71-3	Pass
Chromium VI acc. to DIN EN 71-3	Pass

Note:

Conclusions on pass/fail are based on the test result from the actual sampling of the received sample(s).

Conclusions are based on the relevant requirements; measurement uncertainties are not taken into account. Only results above the relevant detection limit are taken into account for the calculation of sums.

Test was conducted on composite of random parts of the item as per client's request and the test result is the overall result.

The composite sampling method is based on the client's special request and could be a modification from the testing standard.

For 2-composite mix with results exceeding one half of the relevant requirements or 3-composite mix with results exceeding one third of the relevant requirements, the composite sample may have the possibility of one or more components that can lead to a failure result, it is recommended to test on individual basis.

Photo documentation

SGS Institut Fresenius GmbH, Im Maisel 14, D-65232 Taunusstein

Test report no. 3071021

Latex Occidental Exportadora, S.A. de C.V. Calz. Glez. Gallo 2290 MX-44890 C.P.Guadalajara, lal. Mexico

SGS Order No.: 3855160 Date: 07/09/2016 Page 3/6

List of sample parts

Comp. no	Component-ID	Sample-Description			Original Sample ID
1	160869397	balloons	latex	transparent	160855925
2	160869398	balloons	latex	white	160855925
3	160869399	balloons	latex	yellow	160855925
4	160869400	balloons	latex	orange	160855925
5	160869901	balloons	latex	pink	160855925
6	160869902	balloons	latex	red	160855925
7	160869903	balloons	latex	dark violet	160855925
8	160869904	balloons	latex	blue	160855925
9	160869905	balloons	latex	green	160855925
10	160869906	balloons	latex	black	160855925

Test report no. 3071021

Latex Occidental Exportadora, S.A. de C.V. Calz. Glez. Gallo 2290 MX-44890 C.P.Guadalajara, lal. Mexico

SGS Order No.: 3855160 Date: 07/09/2016 Page 4/6

Analytical results

Migration of certain elements

Test Method

DIN EN 71 3:2013-05 + A1:2014, - Analysis was conducted by Inductively Coupled Argon Plasma Spectrometry.

Subsample(s)	<u>Unit</u>	<u>Result</u> <u>1</u>	Result 2	<u>Result</u> <u>3</u>
Aluminum (Al) Antimony (Sb) Arsenic (As) Boron (B) Barium (Ba) Cadmium (Cd) Cobalt (Co) Chromium (Cr), total Copper (Cu) Manganese (Mn) Nickel (Ni) Lead (Pb) ^[1] Selenium (Se) Tin (Sn) Strontium (Sr) Zinc (Zn) Mercury (Hg) Conclusion	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 10 < 10 < 10 < 10 < 10 < 10 0.360* < 10 < 10 < 10 < 10 < 10 < 10 < 20 < 1.0 < 20 < 1.0 < 20 < 1.0 < 20 < 1.0 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 2	12 < 10 < 1.0 < 10 < 10 < 1.0 < 10 < 1.0 < 10 0.350* < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 1.0 < 10 < 10 < 10 < 10 0.260* < 10 < 10 < 10 < 10 < 10 < 10 < 230 < 1.0 Pass
<u>Subsample(s)</u>	<u>Unit</u>	Result 4	<u>Result</u> 5	<u>Result</u> <u>6</u>
Aluminum (Al) Antimony (Sb) Arsenic (As) Boron (B) Barium (Ba) Cadmium (Cd) Cobalt (Co) Chromium (Cr), total Copper (Cu) Manganese (Mn) Nickel (Ni) Lead (Pb) ^[1] Selenium (Se) Tin (Sn) Strontium (Sr) Zinc (Zn) Mercury (Hg) Conclusion	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<pre>< 10 < 10 < 10 < 1.0 < 10 < 10 < 1.0 < 10 < 1.0 < 10 0.270* < 10 < 10</pre>	<pre> </pre> <pre> < 10 < 10 < 1.0 < 10 < 10 < 1.0 < 1.0 < 10 < 10</pre>	<pre> </pre> <pre> < 10 < 10 < 1.0 < 10 < 10 < 10 < 1.0 < 1.0 < 10 < 10</pre>

INSTITUT FRESENIUS

	Test report	no. 3071021		
Latex Occidental Exportadora, S.A. de C.V. Calz. Glez. Gallo 2290 MX-44890 C.P.Guadalajara, Ial. Mexico			5	SGS Order No.: 3855160 Date: 07/09/2016 Page 5/6
				Ŭ
Subsample(s)	<u>Unit</u>	<u>Result</u> <u>7</u>	Result <u>8</u>	Result 9
Aluminum (Al)	mg/kg	< 10	11	13
Antimony (Sb)	mg/kg	< 10	< 10	< 10
Arsenic (As)	mg/kg	< 1.0	< 1.0	< 1.0
Boron (B)	mg/kg	< 10	< 10	< 10
Barium (Ba)	mg/kg	< 10	< 10	< 10
Cadmium (Cd)	mg/kg	< 1.0	< 1.0	< 1.0
Cobalt (Co)	mg/kg	< 10	< 10	< 10
Chromium (Cr), total	mg/kg	0.240*	< 0.200	< 0.200
Copper (Cu)	mg/kg	< 10	< 10	< 10
Manganese (Mn)	mg/kg	< 10	< 10	< 10
Nickel (Ni)	mg/kg	< 10	< 10	< 10
Lead (Pb) ^[1]	mg/kg	< 10	< 10	< 10
Selenium (Se)	mg/kg	< 10	< 10	< 10
Tin (Sn)	mg/kg	< 1.0	< 1.0	< 1.0
Strontium (Sr)	mg/kg	< 10	< 10	< 10
Zinc (Zn)	mg/kg	360	290	250
Mercury (Hg)	mg/kg	< 1.0	< 1.0	< 1.0
Conclusion		Pass	Pass	Pass

<u>Subsample(s)</u>	Unit	<u>Result</u> <u>10</u>
Aluminum (AI) Antimony (Sb) Arsenic (As) Boron (B) Barium (Ba) Cadmium (Cd) Cobalt (Co) Chromium (Cr), total Copper (Cu) Manganese (Mn) Nickel (Ni) Lead (Pb) ^[1] Selenium (Se) Tin (Sn) Strontium (Sr) Zinc (Zn) Mercury (Hg) Conclusion	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 10 < 10 < 1.0 < 10 < 10 < 10 < 0.200 < 10 < 10 < 10 < 10 < 10 < 10 < 10 <

Test report no. 3071021	
Latex Occidental Exportadora, S.A. de C.V.	SGS Order No.: 3855160
Calz. Glez. Gallo 2290	Date: 07/09/2016
MX-44890 C.P.Guadalajara, lal. Mexico	Page 6/6

Re-test

Chromium VI acc. to DIN EN 71-3

Test Method

DIN EN 71 3:2013-07, - Measurement by ion chromatography with post-column-derivatization with diphenylcarbazide.

Subsample(s)	<u>Unit</u>	<u>Result</u> <u>1</u>	Result 2	<u>Result</u> <u>3</u>
Chromium VI (CrVI)	mg/kg	< 0.20	< 0.20	< 0.20
Conclusion		Pass	Pass	Pass
Subsample(s)	<u>Unit</u>	<u>Result</u> <u>4</u>	<u>Result</u> <u>5</u>	<u>Result</u> <u>7</u>
Chromium VI (CrVI)	mg/kg	< 0.20	< 0.20	< 0.20
Conclusion		Pass	Pass	Pass

Note:

* pass together with determination of chromium VI (Requirement chromium VI: not more than 0.2 mg/kg)

Requirement: Limits according to DIN EN 71-3:2013

parameter	unit	limit category 3
Aluminium (AI) Antimony (Sb) Arsenic (As) Bor (B) Barium (Ba) Cadmium (Cd) Cobalt (Co) Chromium III (CrIII) Chromium VI (CrVI) Copper (Cu) Manganese (Mn) Nickel (Ni) Lead (Pb)[1] Selen (Se) Tin (Sn) organo tin Strontium (Sr) Zinc (Zn) Mercury (Hg)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	70000 560 47 15000 18750 17 130 460 0.2 7700 15000 930 160 460 180000 12 56000 46000 94
	iiig/kg	34

*** End of test report ***